If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6w^2-40=0
a = 6; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·6·(-40)
Δ = 960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{960}=\sqrt{64*15}=\sqrt{64}*\sqrt{15}=8\sqrt{15}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{15}}{2*6}=\frac{0-8\sqrt{15}}{12} =-\frac{8\sqrt{15}}{12} =-\frac{2\sqrt{15}}{3} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{15}}{2*6}=\frac{0+8\sqrt{15}}{12} =\frac{8\sqrt{15}}{12} =\frac{2\sqrt{15}}{3} $
| 2(x×x)-5x=0 | | 5u-7-8u=2 | | 30x+19x+11x=180 | | 232x532=1024 | | 54+6x+4x^2=0 | | 4y+5=18 | | (8x+4)+24+56=180 | | 3x2=8x | | a=3=2a+-1+3a+4 | | 2x-1/x^2-2x-3-x-5/x^2+4x+3=x/x^2+9 | | 17=14x-7 | | (-1/2y+8)+2=6/y+4 | | 5/3x+1/3x=2x+35/3+7/3x | | 3-(y-3)=6+y | | 15+3x-x=1445 | | X-(4x-5)=11 | | 7+17p-5=9p+119-5p | | 9x-7=8x-4 | | x*3+4x-7=0 | | 3y+2y=12 | | p=$43-(0.17p-3) | | 5d+5.25=45.2 | | 4.2x+76.4=1.4-8.3x | | 17/(8.7+q)=1 | | d^2-21d=0 | | 3(4f-2)=2(4f+1) | | y=0.5(60)(2)^2 | | 10=-10x+4 | | n-6=2n-6 | | 51x-185=427 | | -3x-17=3x-15 | | 51-(5x+7)=4(x+6)+x |